VGG模型
AlexNet比LeNet更深更大,得到更好的精度
能不能设计的更深更大?
有哪些选项:
更多全连接层(太贵)
更多的卷积层
将卷积层组合成块
1 VGG的结构
VGG块将多个卷积层和一个池化层组合成块:
它这里面用了3x3的卷积核,原因是在相同的计算开销下,3x3比5
x5的卷积核拥有更好的效果。
用多个VGG块就可以构成一个VGG网络:
VGG其实可以看作是一个更大更深的AlexNet
总结:
VGG使用可重复使用的卷积块来构建深度卷积神经网络
不同的卷积块个数和超参数可以得到不同复杂度的变种
2 VGG模型的实现
首先是构建VGG块:
import torch
from torch import nn
from d2l import torch as d2l
# VGG块的实现
def vgg_block(num_convs, in_channels, out_channels): # 几层CNN,输入的通道,输出的通道
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) # 最后加一个最大池化层
return nn.Sequential(*layers)
然后设计一个VGG11模型
# 一个五块的VGG
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
# 实现VGG11, 8+3
def vgg(conv_arch):
conv_blks = []
in_channels = 1
# 卷积层部分
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
# 全连接层部分
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
手动打印每一层的输出维度
# 打印输出维度
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape:\t',X.shape)
结果:
Sequential output shape: torch.Size([1, 64, 112, 112])
Sequential output shape: torch.Size([1, 128, 56, 56])
Sequential output shape: torch.Size([1, 256, 28, 28])
Sequential output shape: torch.Size([1, 512, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
Flatten output shape: torch.Size([1, 25088])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])
为了方便实验,降低了VGG的参数,然后开始训练
ratio = 4
# 因为网络太大,训练难度大不利于演示,因此这个减小通道数
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
# 训练模型
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
结果:
loss 0.170, train acc 0.938, test acc 0.925
614.9 examples/sec on cuda:0