Batch Normalization 批量归一化

考虑一个问题,当一个网络很深的情况下
梯度反传过程中,上面的梯度会更大,下面的梯度会更小
这样会导致上面的网络会很快收敛,而下面的网络会更新很慢

这样会有一个什么问题呢?
当下面的参数发生变化后,对输入抽象出来的特征会发生变化,则上面的网络又需要重新训练
导致收敛变慢

因此我们可以用batch normalization 来将输出的均值和方差进行固定,
这样的好处是在训练底部时可以避免变化顶部层

1 批量归一化

对于一个批量数据,计算均值和方差

Image

利用均值和方差来进行归一化

Image

特点:
可以学习的参数是\beta 和 \gamma
作用的位置:
全连接层和卷积层的输出上,激活函数前
全连接层和卷积层的输入上
对于全连接层,作用在特征维
对于卷积层,作用在通道层

总结:
批量归一化固定小批量的均值和方差,然后学习出适合的偏移的缩放
可以加速收敛速度,但一般不改变模型精度

批量归一化实现

从0实现批量归一化

import torch
from torch import nn
from d2l import torch as d2l

# 批量归一化从0开始实现,(输入,(可以学的两个参数),全局的均值,全局的方差,避免除0,用来更新全局均值和方差的)
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
  # 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
  if not torch.is_grad_enabled():
    # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
    X_hat = (X- moving_mean) / torch.sqrt(moving_var + eps)
  else:
    assert len(X.shape) in (2, 4)
    if len(X.shape) == 2:
      # 使用全连接层的情况,计算特征维上的均值和方差
      mean = X.mean(dim=0)
      var = ((X- mean) ** 2).mean(dim=0)
    else:
      # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
      # 这里我们需要保持X的形状以便后面可以做广播运算
      mean = X.mean(dim=(0, 2, 3), keepdim=True)
      var = ((X- mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
    # 训练模式下,用当前的均值和方差做标准化
    X_hat = (X- mean) / torch.sqrt(var + eps)
    # 更新移动平均的均值和方差
    moving_mean = momentum * moving_mean + (1.0- momentum) * mean
    moving_var = momentum * moving_var + (1.0- momentum) * var
  Y = gamma * X_hat + beta # 缩放和移位
  return Y, moving_mean.data, moving_var.data

构建归一化层

class BatchNorm(nn.Module):
  # num_features:完全连接层的输出数量或卷积层的输出通道数。
  # num_dims:2表示完全连接层,4表示卷积层
  def __init__(self, num_features, num_dims):
    super().__init__()
    if num_dims == 2:
      shape = (1, num_features)
    else:
      shape = (1, num_features, 1, 1)
    # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
    self.gamma = nn.Parameter(torch.ones(shape))
    self.beta = nn.Parameter(torch.zeros(shape))
    # 非模型参数的变量初始化为0和1
    self.moving_mean = torch.zeros(shape)
    self.moving_var = torch.ones(shape)

  def forward(self, X):
    # 如果X不在内存上,将moving_mean和moving_var
    # 复制到X所在显存上
    if self.moving_mean.device != X.device:
      self.moving_mean = self.moving_mean.to(X.device)
      self.moving_var = self.moving_var.to(X.device)
    # 保存更新过的moving_mean和moving_var
    Y, self.moving_mean, self.moving_var = batch_norm(
      X, self.gamma, self.beta, self.moving_mean,
      self.moving_var, eps=1e-5, momentum=0.9)
    return Y

在LeNet中引入批量归一化

# 实现LeNet
net = nn.Sequential(
  nn.Conv2d(1, 6, kernel_size=5), 
  BatchNorm(6, num_dims=4), # 6表示通道数
  nn.Sigmoid(),
  nn.AvgPool2d(kernel_size=2, stride=2),
  nn.Conv2d(6, 16, kernel_size=5), 
  BatchNorm(16, num_dims=4), 
  nn.Sigmoid(),
  nn.AvgPool2d(kernel_size=2, stride=2), 
  nn.Flatten(),
  nn.Linear(16*4*4, 120), 
  BatchNorm(120, num_dims=2), 
  nn.Sigmoid(),
  nn.Linear(120, 84), 
  BatchNorm(84, num_dims=2), 
  nn.Sigmoid(),
  nn.Linear(84, 10))

打印输出维度

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)

# 打印每一层的输出维度
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

结果:
Conv2d output shape: torch.Size([1, 6, 24, 24])
BatchNorm output shape: torch.Size([1, 6, 24, 24])
Sigmoid output shape: torch.Size([1, 6, 24, 24])
AvgPool2d output shape: torch.Size([1, 6, 12, 12])
Conv2d output shape: torch.Size([1, 16, 8, 8])
BatchNorm output shape: torch.Size([1, 16, 8, 8])
Sigmoid output shape: torch.Size([1, 16, 8, 8])
AvgPool2d output shape: torch.Size([1, 16, 4, 4])
Flatten output shape: torch.Size([1, 256])
Linear output shape: torch.Size([1, 120])
BatchNorm output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
BatchNorm output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])

开始训练

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果:
loss 0.268, train acc 0.900, test acc 0.791
17149.0 examples/sec on cuda:0

Image

查看\gamma和\beta的参数

# 查看gamma和beta的参数
net[1].gamma.reshape((-1,)), net[1].beta.reshape((-1,))

结果:
(tensor([1.8129, 2.6654, 3.1536, 4.2873, 3.2546, 1.9251], device='cuda:0',
grad_fn=),
tensor([ 2.2025, -2.3604, 3.3588, 1.6798, -1.3494, -2.2466], device='cuda:0',
grad_fn=))

使用pytorch简单实现批量归一化

# 简单实现
net = nn.Sequential(
  nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
  nn.AvgPool2d(kernel_size=2, stride=2),
  nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
  nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
  nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
  nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
  nn.Linear(84, 10))

开始训练

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

结果:
loss 0.266, train acc 0.902, test acc 0.773
29665.3 examples/sec on cuda:0

Image

代码链接