单机多卡并行
一个机器可以安装多个GPU
在训练和预测时,可以将小批量计算切分到多个GPU上来达到加速的目的
常用的切分方案有:
- 数据并行-将小批量数据分成n块,每个GPU拿到完整的参数计算一块数据的梯度(通常性能更好)
- 模型并行-(将模型分成n块,每个GPU拿到一块模型计算它的前向和反向结果,通常适用于模型大到单GPU放不下)
- 通道并行(数据+模型并行)
1 数据并行
以两个GPU为例:
- 在任何一次迭代中,给定的随机小批量数据将被分成两份,然后均匀分配给每个GPU
- 每个GPU会利用分配的数据计算梯度
- 每个GPU会将计算的梯度发出去,并且进行相加,以获得当前小批量的随机梯度
- 将计算的聚合梯度发送给每个GPU,每个GPU利用得到的随机梯度来更新模型参数
大致的流程图为:
总结:
- 当一个模型能用到单卡计算时,通常使用数据并行拓展到多卡上
- 模型并行则用在超大模型上
2 数据并行的从0实现
以LeNet为例来来实现
- 先构建LeNet模型
%matplotlib inline
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
# 初始化模型参数
scale = 0.01
W1 = torch.randn(size=(20, 1, 3, 3)) * scale
b1 = torch.zeros(20)
W2 = torch.randn(size=(50, 20, 5, 5)) * scale
b2 = torch.zeros(50)
W3 = torch.randn(size=(800, 128)) * scale
b3 = torch.zeros(128)
W4 = torch.randn(size=(128, 10)) * scale
b4 = torch.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]
# 定义模型
def lenet(X, params):
h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1])
h1_activation = F.relu(h1_conv)
h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2))
h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3])
h2_activation = F.relu(h2_conv)
h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2))
h2 = h2.reshape(h2.shape[0],-1)
h3_linear = torch.mm(h2, params[4]) + params[5]
h3 = F.relu(h3_linear)
y_hat = torch.mm(h3, params[6]) + params[7]
return y_hat
# 交叉熵损失函数
loss = nn.CrossEntropyLoss(reduction='none')
- 向多个设备分发参数
# 给一个参数,然后将它发送到哪个GPU上
def get_params(params, device):
new_params = [p.to(device) for p in params]
for p in new_params: # 需要计算梯度
p.requires_grad_()
return new_params
# 将所有参数复制到一个GPU
new_params = get_params(params, d2l.try_gpu(0))
print('b1 权重:', new_params[1])
print('b1 梯度:', new_params[1].grad)
- 使用allreduce函数将所有向量相加,并将结果广播给所有GPU
# 将所有向量相加,并广播给所有GPU
def allreduce(data):
for i in range(1, len(data)):
data[0][:] += data[i].to(data[0].device) # 将数据复制到GPU0上进行相加
for i in range(1, len(data)):
data[i][:] = data[0].to(data[i].device) # GPU0计算得到的结果发送给所有GPU
data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('allreduce之前:\n', data[0], '\n', data[1])
allreduce(data)
print('allreduce之后:\n', data[0], '\n', data[1])
- 将一个小批量数据均匀分布在多个GPU上
data = torch.arange(20).reshape(4, 5)
devices = [torch.device('cuda:0'), torch.device('cuda:1')]
split = nn.parallel.scatter(data, devices) # 将数据均匀切开,分配给每个GPU上
print('input :', data)
print('load into', devices)
print('output:', split)
- 为了方便使用,定义一个split_batch函数,将数据和标签都进行拆分
def split_batch(X, y, devices):
"""将X和y拆分到多个设备上"""
assert X.shape[0] == y.shape[0]
return (nn.parallel.scatter(X, devices),
nn.parallel.scatter(y, devices))
- 定义一个多GPU训练小批量数据的函数
# 定义一个多GPU训练小批量数据的函数
def train_batch(X, y, device_params, devices, lr): # 输入,所有GPU上的参数,GPU,学习率
X_shards, y_shards = split_batch(X, y, devices) # 拆分数据
# 在每个GPU上分别计算损失, ls中包含了所有GPU中的损失
ls = [loss(lenet(X_shard, device_W), y_shard).sum()
for X_shard, y_shard, device_W in zip(
X_shards, y_shards, device_params)]
for l in ls: # 反向传播在每个GPU上分别执行
l.backward()
# 将每个GPU的所有梯度相加,并将其广播到所有GPU
with torch.no_grad():
for i in range(len(device_params[0])):
allreduce([device_params[c][i].grad for c in range(len(devices))])
# 在每个GPU上分别更新模型参数
for param in device_params:
d2l.sgd(param, lr, X.shape[0]) # 在这里,我们使用全尺寸的小批量
- 开始训练
def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
# 将模型参数复制到num_gpus个GPU
device_params = [get_params(params, d) for d in devices]
num_epochs = 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
timer = d2l.Timer()
for epoch in range(num_epochs):
timer.start()
for X, y in train_iter:
# 为单个小批量执行多GPU训练
train_batch(X, y, device_params, devices, lr)
torch.cuda.synchronize() # 同步一次,保证每个GPU都完成了
timer.stop()
# 在GPU0上评估模型
animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(
lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))
print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
f'在{str(devices)}')
# 单GPU运行
train(num_gpus=1, batch_size=256, lr=0.2)
# 多GPU运行
train(num_gpus=2, batch_size=256, lr=0.2)
3 数据并行的简单实现
- 首先构建模型
import torch
from torch import nn
from d2l import torch as d2l
# 定义模型
def resnet18(num_classes, in_channels=1):
"""稍加修改的ResNet-18模型"""
def resnet_block(in_channels, out_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(out_channels,
use_1x1conv=True, strides=2))
else:
blk.append(d2l.Residual(out_channels, out_channels))
return nn.Sequential(*blk)
# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
net = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
net.add_module("fc", nn.Sequential(nn.Flatten(),
nn.Linear(512, num_classes)))
return net
- 网络初始化
# 网络初始化
net = resnet18(10)
# 获取GPU列表
devices = d2l.try_all_gpus()
# 我们将在训练代码实现中初始化网络
- 训练函数
def train(net, num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
def init_weights(m):
if type(m) in [nn.Linear, nn.Conv2d]:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights)
# 在多个GPU上设置模型
net = nn.DataParallel(net, device_ids=devices) #给定一个网络,给定GPU,然后将Net复制到每个GPU上
trainer = torch.optim.SGD(net.parameters(), lr)
loss = nn.CrossEntropyLoss()
timer, num_epochs = d2l.Timer(), 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
for epoch in range(num_epochs):
net.train()
timer.start()
for X, y in train_iter:
trainer.zero_grad()
X, y = X.to(devices[0]), y.to(devices[0])
l = loss(net(X), y)
l.backward()
trainer.step()
timer.stop()
animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))
print(f'测试精度:{animator.Y[0][-1]:.2f},{timer.avg():.1f}秒/轮,'
f'在{str(devices)}')
# 单卡训练
train(net, num_gpus=1, batch_size=256, lr=0.1)
# 多卡训练
train(net, num_gpus=2, batch_size=512, lr=0.2)